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SUB-NYQUIST DISTORTIONS IN SAMPLED DATA,
WAVEFORM RECORDING, AND VIDEO IMAGING

Glenn L. Williams

National Aeronautics and Space Administration
Glenn Research Center

Cleveland, Ohio 44135

SUMMARY

Investigations of aliasing effects in digital waveform sampling have revealed the existence of a mathemati-

cal field and a pseudo-alias domain lying to the left of a "Nyquist line" in a plane defining the boundary between

two domains of sampling. To the fight of the line lies the classic alias domain. For signals band-limited below the

Nyquist limit, displayed output may show a false modulation envelope whenever inadequate signal reconstruction is

used before display. The effect occurs whenever the sample rate and the signal frequency are related by ratios of

mutually prime integers. For cost and technical reasons, the waveform display devices omit the required reconstruc-

tion steps. Belying the principal of a 10:1 sampling ratio being "good enough," this distortion easily occurs in

graphed one-dimensional waveforms and two-dimensional images and occurs daily on television.

1. INTRODUCTION

An instructive experiment begins by coupling the sine-wave output of an analog signal generator into an

analog strip-chart recorder and plotting the trace of the waveform, as in figure l(a). Then, without increasing the

chart paper speed, the frequency of the sine-wave signal is slowly increased until the displayed signal trace just

merges into a solid band of color, as in figure 1(b). At some point, as the signal frequency is further increased, the

painted band of signal recording will start to decrease in amplitude as the signal frequency starts to approach the

upper limit of the frequency response of the recorder. This effect is shown in the remaining portions of figure 1.

The roll-off in frequency response is, of course, caused by the frequency bandwidth limitations of the electronics

(and sometimes the electromechanics) of the strip-chart recorder. Recorder manufacturers commonly print roll-off

specifications in their instrument manuals, including the 3-decibel (3-db) down frequency point, where the

recorder's displayed signal amplitude has dropped by a factor of one-half (defined as the bandwidth of the recorder).

Modern digital waveform recorders and oscilloscopes use extremely fast state-of-the-art analog-to-digital

converters in the signal-coupling front end amplifiers, so that no longer is the analog low-pass frequency roll-off of

any concern. A well-known principle of digitally sampled waveform acquisition is that the user must avoid the pos-

sibility of signal aliasing by restricting the input frequencies (including harmonics) to less than one-half the sam-

piing frequency. This obeys the Nyquist-limit rule. But with analog-to-digital converters which can sample up to

several hundred million times per second, there would seem to be no concern about having distorted waveform

records in most everyday applications. The standard rule-of-thumb is just to avoid measuring signals containing

frequencies greater than approximately one-tenth of the Nyquist limit (see below).

Inside the modern recorder, waveform playback is almost universally done by graphing vector or raster line

approximations of the recorded waveform on a digital display, or for analog playback, by sending the data through a

digital-to-analog converter, followed by resistive-capacitive (RC) or sin(x)/x filtering to smooth the analog output.

A half century of experience has iconified the Shannon (WKS) Sampling Theorem which prescribes an

upper bound to the signal frequency such that (ref. 1):

"If a function of time is limited to the band from 0 to W cycles per second, it is com-
pletely determined by giving its ordinates at a series of discrete points spaced 1/2W seconds apart

in the manner indicated by the following result: Ifflt) has no frequencies over W cycles per sec-
ond, then

f f( n _(sinn(2Wt-n) (1)
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Figure 1 .--(a) A slow sine wave signal is recorded on

a strip chart recorder. (b) The signal frequency is
increased until the trace turns into a solid band.

(c) As the frequency continues to increase the

amplitude of the solid band starts to roll off.

In countless articles, this theorem has been cited as justification for dropping concern about sampling dis-

tortion effects. All one needs to do is keep the signal frequency bandwidth well below one-half the sample frequency

(which is also called the Nyquist frequency) and the "waveform can always be reconstructed completely because of

Shannon's Theorem."
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This report will show that neglecting the details of sampling theory can lead to serious misunderstandings

about the appearance of displayed waveforms if certain special conditions exist. Serious distortions occur even when

the input waveforms are correctly bandwidth limited or are even pure sine-waves. The distortions will be shown to

occur at frequencies far below the sampling frequency and are not caused by frequency roll-off limitations in the

analog-to-digital converter or elsewhere in the instrument. Rather, the distortions occur because most cost-effective

signal waveform playback and display technologies leave out the complete waveform reconstruction required in
accordance with the Sampling Integral. 1 As a result, when technical accuracy is of strategic importance, particular

care must be applied to interpreting the display and reproduction of sampled-data waveforms on oscilloscopes,

waveform recorders, spreadsheet charts and even television.

2. THEORY

In equation (l), with some manipulation of the mathematics, one also derives the "Nyquist rate" which is

the minimum rate at which the signal needs to be sampled in order to reconstruct it completely. The Nyquist rate is

one-half of the sample rate, or W, as expressed in the quotation above. Shannon's theorem can be paraphrased as

"So long as the signal is band-limited to less than the Nyquist frequency, it can be completely reconstructed without

any distortion."

Unfortunately this simple statement is often construed as implying that the waveform can be simply dis-

played without any other work. In actuality, the reconstruction requirements involve coping with mathematical and

physical nuances, such as:

(a) the signal must be continuous forever in the past and in the future, in order to obtain all the sample

points necessary to perform the reconstruction, and

(b) an infinitely fast digital processor is required to make all the computations in anything near real-time.

Given these ominous reconstruction requirements the user can hardly be blamed for ignoring reconstruction
issues.

2.1 Definitions

Several definitions of terms are in order here. In this paper signal is usually the term applied to a continu-

ous analog signal, as opposed to a discrete digital signal. Signals are processed by something of the nature of a digi-

tal sampling system in order to be translated into a table of numbers which can later be reproduced on some

quasi-analog output means in order to portray the waveform as accurately as possible. A one-dimensional signal is

a continuous analog signal as normally viewed on an oscilloscope or waveform recorder as a wavy line. A one-

dimensional voltage signal as a function of time is represented by a continuous functionflt) for the purposes of

mathematical analysis. A two-dimensional signal is best thought of as a set of one-dimensional signals (raster lines

with the amplitude shown in brightness level rather than y-axis displacement) representing thin slices of an image as

viewed on a television or computer monitor, wherein the thin slices are ideally so thin that the eye sees only the

composite image without seeing edges of the slices.

A distortionless representation of a signal on an oscilloscope screen or waveform recorder output means

that except for a constant scaling factor, the amplitude along the displayed waveform always stands for and has the

same "shape" as the original signal.

A sampled signalflt) is represented as a set of points in a table or a computer memory device which repre-

sent a very close approximation to the amplitude of the signal at the instants of time when the sampling device

measured the original signal.

ISee reference 3, p. 75. The discrete form of the integral is found in many texts, and appears as

f(t) = _ f(nT)
sin(_(t tiT))

co(t - nT)
n = -_

Calculation of new data points (reconstruction) with this integral is so computationally intensive that systems designers are forced to leave out

the process. Unfortunately, doing so immediately leads to the effects which are the topic of this report.
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Aband-limitedsignalcontainsonlyfrequencycomponentswhichliebetweentwoendpointsoffrequency,
ahighendpointandalowendpoint.Inalmostallwaveformrecordersandoscillographs,thefrequencyband
extendsfromzerofrequencyonthelowend(a"dc"signal)tosomeupperacsignalfrequency.Thustheinstrument
displayingthesignalwaveformcouldbethoughtofasalow-passfilterdevice.Theconceptof signaldisplayapplies
equallywelltootherusesoftheoutputsignalinformation.Onesuchotheruseistheaudiooutputofatelephone
circuitortheaudiofromasound(music)system.Again,theoutputdeviceseemstobehaveasakindoflow-pass
filter.

2.2CommonCausesofPlaybackDistortion

Analogstrip-chartrecordersandoscilloscopeslongagobecameantiquatedduetotheimproved technology
and lower cost of digital waveform sampling, flat-panel display technology, and computers. Analog recorders and

oscilloscopes have always suffered from high frequency roll-off of the electronic or electromechanicai devices used

to reproduce the waveform on the display media. High-speed signal digitization with an analog-to-digital converter

eliminates the roll-off problem and the sampled data does not have to be reproduced in a manner which depends on

the frequency limitations of analog output technology. The waveform samples can be stored in memory, transferred
to disk or tape for long-term storage, or sent over computer networks. In those cases, display of the waveform data

occurs in near-real time or well after the fact. As long as the visual appearance of the displayed waveform is pleas-

ing and steady to the eye, the brain does not register the fact that the displayed or graphed waveform is made of tiny
little segments.

A common practice used by manufacturers in their sales literature for digital oscilloscopes and waveform

recorders is to list specifications claiming a "flat" frequency response. This claims is made due to the implicitly fast

digital logic and extremely high sample rate used in the recorders. The claim of "fiat response" is, again, a result of

the common misinterpretation of the Shannon Sampling Theorem cited above. Both the sales engineer and the cus-

tomer may believe that a properly bandwidth-limited digitally sampled signal can be reproduced almost perfectly,
right up to the Nyquist limit.

Experienced users generally expect to see small amounts of waveform distortion on a digitally driven dis-
play device. The conunonly believed causes are:

(at The hardware/software performs some linear or spline-fit interpolation between actual sample points

and forms a quasi-continuous waveform representing the action of the System Under Test. Neither of these interpo-
lation methods make use of the Sampling Integral. So therefore some slope errors will occur.

(b) The display device is often a raster-based system, either because the print-head mechanism is printing

dots horizontally across the paper, or because a cathode-ray tube is displaying the waveform on the screen by elec-

tron beam writing. Therefore, besides the effects of interpolation as in (a), the waveform is distorted slightly by the
jumps from raster line to raster line. The edges of these signals may be slightly distorted.

(cl Signals having segments of rapidly rising or falling data, such as square waves in digital circuits, or

signals are known to exceed the sampling frequency or the fastest slew capability of the display mechanism. Any-
time they are shown they will be distorted.

(d) Natural noise or occasional transients in the signals which are caused by various natural phenomena,
such as Johnson noise or flicker noise. Extremely fast transients in the signals are analog in nature and may cause

some analog overshoot or ringing in the input device (i.e., oscilloscope probe) used to connect the signal under test

to the analog-to-digital converter circuitry. But these effects have an analog origin and little to do with digital
sampling.

The effects of the above forms of distortion can be reduced by careful instrument design, using higher

speed sampling or finer dot pitch display technology, so that usually the distortions are small enough to be ignored.
Signal reconstruction is usually omitted for one of several reasons. For instrumentation waveform record-

ers, textbook discussions (ref. 4) show that adequate reconstruction of the original waveform by analog means is

theoretically possible and intuitively a requirement. However, the inherently high cost for design and fabrication of a

wide-band adaptive analog reconstruction filter built into the system output would add a bottom-line price increase

and discourage customers. And, there is sometimes something counterintuitive about having an analog output device
in a digital waveform display system.
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Ontheotherhand,waveformreconstructionbyadigitalprocessorusingthediscretesamplingintegralalso
requirestoomuchcostforthecomputationraterequired,andoften(asin real-timeTVimages),thereisnoreason-
ablypricedprocessorcapableofperformingthemyriadofcalculationsinmicroseconds.Morewillbesaidaboutthe
processingproblemlaterinthisdocument.

3. UNCOVERINGA NEWDISTORTION

A marketingcomparisonstudywasperformedwiththegoalofdocumentingthesamplinganddisplay
accuraciesofsomecompetitivecommercialdigitalstripchartrecordersandoscilloscopes.Builtintooneofthesub-
jectstripchartrecorders,abovethepaperoutput,wasalinearbaroflight-emittingdiodeswhichassistedin location
andalignmentofthetracebeingplottedonthepaper.Therecorderinputwasdrivenbyahigh-qualityanalogsignal
generator.Duringawidefrequencysweepbeingusedtogenerateanearlysolidwaveformstripewhichwoulddocu-
mentthe"flatresponseofthesystem,"a"beat"inthewaveformamplitudeshowninthelightbaroccurredneara
certainsinglefrequencyonthesignalgenerator.In ordertofurtherinvestigatethis,thesignalgeneratorsine-wave
frequencywas"tuned"toreducethefrequencyofthebeat,andthechartprintingdrivewasenabled.Next,thepaper
printspeedwassetlowenoughthatthesine-wavewaveformproducedanearlysolidswathofprinting.Ideally,if
thestripchartrecorderhadshownthe"flat"responseuptoneartheNyquistlimit,asclaimedinthespecifications
fortheinstrument,theenvelopeoftheprintedwaveformwouldhavebeenanearlysolidstripeofprintingwitha
straighttopandastraightbottom.Butwiththetestwaveform,therewasanobviousenvelopemodulation,repro-
ducedherein figure2.Wenotedtheobviousdepthofthenotchinthemodulation,whichwasanimmediatesubject
ofconcernsincethesignalgeneratorandstrip-chartrecorderseemedbothtobeinotherwiseexcellentoperating
condition.

Furtherexperimentationshowedthattheeffectwasnotafluke.Therewasawholefamilyoffrequencies
exhibitingthesedeviationsfromtheexpectedflattrace(seeninfig. 1).Eachtestrequiredfindinganew"beat"and

Figure 2.--An actual waveform captured with a
commercial digital thermal strip chart recorder.
The very black solid thermal printing on the paper
was scanned into a digital photograph form for
this reproduction. The sample rate in the strip
chart recorder was measured as 12170 Hz. The

signal was from a sinewave signal generator set to
1367 Hz. Thus the ratio of signal frequency to
sample rate was 0.1130649, or almost exactly 6/53.

The problem in this example is that the envelope of
the waveform (top and bottom edges) should be
almost exactly fiat. Even allowing for some amount
of digital sampling "noise" the envelope was not
expected to have the well-defined cusping. The
cause of this effect became a study topic.
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carefullyadjustingthe sine-wave generator frequency control to center on each one. Each frequency where a "reso-

nance" occurred was recorded, and the strip chart record was removed and saved, although at the time the cause of

the distortions was not obvious. Centering on the "beat" frequency required careful tuning. As the signal generator

frequency was very slowly swept past the "center frequency," on each side of the center frequency, the envelope

modulation would increase in beats per second and the depth of the notch in the dark stripe would decrease until it

faded away, or was replaced by a whole new set of beat events at another critical frequency.

Obviously a simple sine wave of constant frequency has one frequency, and is therefore inherently band-

limited to that frequency. Fourier theory shows that single sine-wave has one signal frequency and requires no har-

monics to exist. The literature says that, providing that the Nyquist limit is not exceeded, there is no way for the

sine-wave signal to produce aliased waveforms. So this resonance effect and the characteristic notching of the wave-
form modulation envelope were disconcerting.

Ultimately, this test was repeated with a set of different devices, using a digital storage oscilloscope made

by an unrelated manufacturer, with input from a different sine-wave generator also made by a different unrelated

manufacturer. The results were fundamentally and exactly repeatable. This was not something happening only to

strip-chart recorders. A sample of the actual oscilloscope output is displayed in figure 3. These modulations seem to

point to a common cause independent of any particular hardware design or manufacturer.

Over time, some study of the technique and frequencies involved resulted in the development of a math-

ematical model for what had happened. In this model, an arch-typical amount of envelope modulation occurs at a

signal frequency which is 6/53 (0.113207...) of the sample rate, or roughly 1/9 of the sample rate. This result is

always reproducible with recording equipment which is in good operating condition. In fact, as will be shown, this

result is reproducible on a computer spreadsheet, as in figure 4. The reader is invited to perform an independent trial
of this experiment. The results will be the same.

Single sequ_ence 1.00 MS/s
U...........................................................:r ........................................................]i

2_ _

3-o .... i ....

4-¢ ..... _ .... _ " -_ .... ; :-_" _ .... .... .

i50bmVi .... Ch'2 ' 560'V .... M'50.0 _ s' ; '(_h'l'_/L= _ :-:li0mV 18Jun1999

Ch 3 5.00 V Ch 4 5.00 V 14:51: 59

Figure 3._An actual waveform captured with a commercial digital storage oscilloscope and saved
as a graphics file. The sample rate is shown. The sine wave input frequency on Channel 1 was
113.20754 kHz from a commercial 1 Volt peak-to-peak synthesized waveform generator.
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Figure 4._The condition of sampling a sine wave at any given ratio between signal
frequency and sample rate can be reproduced in Microsoft Excel TM without having

to run a test with a strip chart recorder and actual electronic instrumentation or

Analog-to-Digital Converter. Here the special case of E issynthesized from

calculated data and plotted in a chart form.

Since the time of the above experiments, various texts and papers on sampling theory, Moir6 patterns, and

the like have been researched, without ever finding a similar underlying model. Because of concern that distortion

like this can creep into important scientific waveform recording, and even into video image reproduction, the model

below is proposed for others to understand and apply in their work.

By now the reader should understand that because signal reconstruction is omitted from the digital display

device (or software equivalent), distortion results. This distortion appears to be a modulation of the envelope of the

signal, quite often containing sufficient "percentage of modulation" to have a serious affect on the displayed results.

Now let us learn why it occurs.

3.1 Development of the Model

A constant frequency and constant amplitude sine-wave waveform is most certainly a bandwidth-limited

wavefonn, expressed as

f(t) = sin(o_t)

where

Assume that this waveform is sampled such that

_ = 2rcf.

1

f < fc =_f_

wherefc is the Nyquist frequency andfs is the sample rate. Then we know that the Nyquist limit is not being

exceeded. Now we simplify equation (2) as

1

f<--_f_.

(2)

(3)
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Wethengeneralizebydefiningarbitrarypositiverealintegersm and n such that

m
f-<--fs.

n

with the constraint that

(4)

or, as a redefinition of the Nyquist limit,

m<-ln (5)
2

2m < n. (6)

Now we apply this to the above special case where m = 6 and n = 53. The number 53 is a rather uninterest-

ing and seldom mentioned prime number, while 6 is the product of two primes, 2 and 3. We note that 6 and 53 are

mutually prime (they have no common divisor other than 1 ). Whenever these two numbers are involved in a repeat-
ing system, there is a cycle which is 6 times 53, or 318, long.

3.2 The Wheel Analogy of Sampling System

Assume the example of two wheels with tires rolling in parallel at a constant translational velocity down a
straight track. The outside diameters of the tires are in the ratio of 6 to 53, as in figure 5.

A mark on each tire cycles up and down in the y-axis so as to form a sinusoid 2

y= sin(o)t)

C_

3 4

YA(t)

YB(t)

0 1 2

Figure 5.mPosition of marks on tires A and B as a

function of time, with the elevation y of the marks
shown every time the elevation of the mark on Tire B

is equal to zero. Effectively, those points occur at
the sample times as enumerated. The elevation of

the marks on both tires will be zero again at time
t = m * n - 1 when exactly m rotations of Tire A
and n rotations of Tire B have occurred. For most

products m * n, the number of points to show is very
large and therefore this drawing is NOT TO SCALE.

2This equation can be derived by applying the parametric equation of motion for a point on a circle of radius r as the circle rolls to the right at

unit velocity, with the locus of points forming a cycloid. If the equation of the circle is expressed as x2+y2=r 2, then the y-axis position of the point

is y=r(l-cos(t)) for all t. For a unit circle moving at unit velocity, dv/dr=- sin(t).
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Duetotheratioofdiameters,andthuscircumferences,thelargertirewillonlyhaverolled48/53ofone
turnafterthesmallertirehasmade8wholeturns.Afteronemoreturnofthesmallertire,thelargertirewillhave
rolled54/53ofoneturn.It willbeimpossibleafteronlyoneturnofthelargertiretohaveitsmarkstrikethetrackat
sametimeasthemarkonthesmallertire.Afterthesecond8cyclesofthesmallertire,thescenariowillbeapproxi-
matelyrepeated,withanadditionalfractionofaturnremaining(or exceeded) on the larger tire.

But (since 6 x53 = 318) after a total elapsed time 318, both tire marks will touch the track again at exactly

the same moment. Thereafter, if the track is long enough, the cycle is repeated every 318 time units, since 6 and 53

are mutually prime numbers. The distance cannot be smaller because 53 is a prime number, and 6 is a product of the

two primes 2 and 3 and cannot evenly divide into 53.

Consider now a system of sampling, wherein the height of the mark on the large tire is logged every time
the mark on the smaller tire contacts the track. If charted for thousands of unit intervals, the resulting sine-wave

waveform will have impressed on it a modulation or envelope ripple caused by the repeated misses on the peak

amplitude of the mark on the larger tire. (It is left as a challenge to the reader to use a charting program or spread-
sheet on a modern computer and reproduce the essentials of fig. 4.)

Once the existence of the modulation is recognized, the implications for the world of one-dimensional sig-

nal sampling, control system design, telephony, and so forth, are immediately recognized. These implications

become now the subject of the remainder of this paper.

3.3 Examples

Many authors, in discussing sampled data systems, fall back on the Nyquist criterion for determining when

a signal can be usefully sampled and when it cannot. For the above wheel scenario, the Nyquist criterion implies that

the circumference of the larger tire should be at least twice the circumference of the smaller tire.
The initial choices of 6 and 53 for m and n in equation (4) happen to yield a large, obvious modulation.

The reasoning applies to the general case of any two mutually prime integer numerators and denominators con-

strained as in equations (4) or (5). For various m and n, the modulation will still be present in larger or smaller

amounts. (A method to calculate the percentage of modulation is shown below.)

Of course, if m is exactly one-half of n, the Nyquist frequency is being sampled and the output is useless.

For m/n = 1/3, 1/4, etc. similar ugly results are obtained. But there are dozens of other highly visual possibilities in

the range where

1 m i
--<--<--.

20 n 2

The reader has already been encouraged to try the above model with a spreadsheet program. It is even more

dramatic to set up a live experiment with an oscilloscope or digital strip chart recorder and a sine wave signal gen-

erator. The experimental apparatus will need a recorder/oscilloscope having a thermally stable constant sample rate

clock. The signal generator should be thermally stable as well and preferably have a digital frequency readout and

adjustment means, because the zones of visible modulation are quite narrowly located around the m/n nodes. Of

course, for this paper the experiment has already been completed and actual sampled waveform plots have been

supplied.
Some readers may not have access to spreadsheet software. For those cases, Listing 1 supplies a dynamic

computer program in BASIC, so that a reader having only BASIC can still study the problem. The BASIC program

creates a real-time display on a PC having GWBASIC TM or QBASIC TM or similar BASIC, with the ability to set the

screen to CGA mode (for clarity) for plotting the waveform on a dark background using the LINE() function. The

operator can input the frequencies of interest, in order to experiment in real time with the effect.

Finally, the reader should be aware that this problem occurs in all sampling systems where there is a con-

stant frequency sample rate or a constant spatial distance between samples. In statistics, the problem could occur any

time data is collected or analyzed on a cyclical basis. For instance, assume a key economic indicator is analyzed

monthly by an economist, and the results are published in the economics literature. The economist maintains that the
indicator has a hitherto unrecognized cycle, a cycle which is almost 106 months long. But 106 months of a monthly

published statistic could be related by 106/12 or 53/6. An obvious distortion in the data could occur having nothing

at all to do with a real cycle or a real fact.
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LISTING i.

i0 REM PRogram to print samples along sine wave

20 CLEAR : CLOSE : CLS : KEY OFF

40 PI = 3.1415926536#

50 FS - I000_

60 INPUT "What is the sample rate ratio"; RAT

70 FP = i000]

80 TN - 2 * PI / RAT

90 Y : 0[

i00 Z : 0[

II0 TPI = i! / FP

120 PT = TPI

!30 CLS : SCREEN 1

140 COLOR 0, 1

150 NN% = 0

160 FOR N : 1 TO 10000 STEP 1

170 T : N / FS

i80 X = SIN(TN * N)

190 IF Y < X THEN Y = X

200 IF Z > X THEN Z = X

210 IF (T < PT) GOTO 320

220 YP% : FIX(79! * Y) + I00

230 ZP% - FIX(79! * Z) + i00

240 NN% = NN% + 1

250 IF NN% > 319 THEN NN% : 0

260 LINE (NN%, 0)-(NN%, 199), 0

270 LINE (NN%, ZP%)-(NN%, YP%), 2

280 REM PRINT NN%,ZP%,YP%

290 PT : PT + TPI

300 Y - X

310 Z : X

320 IF (INKEY$ <> ....) GOTO 340

330 NEXT N

340 CLS : SCREEN 2: SCREEN 0, 0, 0

350 END

3.4 A Video (Television) Example

A very common example of the problem occurs in television broadcasting, a medium which most people

view more often than they view one-dimensional waveform plots. A television receiver is a system displaying

dynamically changing two-dimensional waveforms. To the eye, the two-dimensional waveform comes in sets of

interleaved raster lines forming static images which are displayed for approximately one-thirtieth of a second each.

As we know, the stream of images occurring at nominally 30 frames/sec (in the United States) is rapid enough to

fool the human eye/brain system into seeing a continuous moving picture.

Each video frame is a static image composed of a set quantity of raster lines "painted" across the screen by

the electron guns inside the cathode ray tube. As the electron guns and yoke magnets steer the painting of a raster

line, the shadow mask interrupts the beams in order to break the display up into areas of red, blue, and green "dots."

The shadow mask is therefore a spatial sampling system having a spatial frequency. The electron guns and yoke

magnets inside the television's cathode-ray tube compartment are driven by smooth analog signals derived from the

demodulation of the radio-frequency television carrier signal. Therefore there is a time element to the display.

Another type of sampling of the video image occurs because of the vertical arrangement of the horizontal

raster lines which form the images. Each image is effectively sliced into hundreds of horizontal strips by the order in

which the electron guns paint the raster lines. The separation of these horizontal strips at a constant pitch forms

another spatial frequency for sampling.
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The sampling problem begins when the video image happens to contain a fine-grained repetitive pattern, so

that the spatial pitch of the image pattern, another spatial frequency, will be exactly a fractional portion of the

shadow mask sampling frequency, or the vertical raster pitch

Repetitive patterns occur in all sorts of ways, such as views of venetian blinds, clothing with patterns, the

flag of the United States, etc. A good example of such an image having a large area with a rapid spatial frequency is

that of a person wearing a patterned or finely striped tie or jacket. In figure 6, a person was wearing a jacket with a

tight hound's tooth or herringbone twill weave. The weave was very visible and very obvious on the screen, so it did

not fit the classic description of an alias caused by having a spatial frequency higher than the sampling frequency

(dot pitch) of the cathode ray tube screen. Most people have seen these visual effects and at times the effects can be

quite annoying. Most people can find an example of them at least once per hour of television viewing. The manufac-

turers of VCRs and TVs call these effects Moir6 patterns and claim their hardware minimizes the effects of these

patterns.

In order to further show that distortions in video images can occur if an object in the image has a pattern

which is harmonically related to the spatial frequency of the display device, a 512×484 image was synthetically cre-

ated with a C program (Listing 2). Each of the 484 raster lines of the image are identical, and result from calculating

and repeating a raster line containing 512 samples of a sine-wave waveform having a frequency which is (you

Figure 6.--This image was photographed off the
screen of a color television with a 35 mm film

camera. The announcer's jacket consisted of a
twill tweed pattern that was obviously visible on
the television screen. Therefore, the spatial
frequency of the cloth weave pattern was lower
than the "IV screen dot pitch Nyquist frequency.
Then, as the announcer moved, the aliasing effect
(inset circle) became obvious. To make this image
of use in this document, because scanners and

digital laser printers can create secondary aliases
in this situation, an 8x10 print of the negative was
ordered. The print was then scanned on a high
resolution scanner. The resulting image was com-
puter cropped to show the portion of the image
containing a series of very obvious aliasing patterns
in the announcer's left shoulder area. It should be

noted that this figure is neither a proof that the
patterns are caused only by the Moire' effect, nor
that they are specifically caused by sub-Nyquist
distortions.
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Listing 2. The C source code for making a raw imagefile which exhibits alias bars (Figure 7).

/* RASTER.C Create basic raw image raster 512x484 monochrome

Usage: RASTER outfile divisor [> textdatafile]

*/

#include <fcntl.h>

#include <sys\types.h>

#include <sys\stat.h>
#include <io.h>

#include <stdlib.h>

#include <stdio.h>

#include <signal.h>
#include <math.h>

#define PI 3.14159265359

unsigned char buff[512] ;
int fh ;

/* PROTOTYPES */

int makefile( char * );
int makeline( double );

int copyline( void );
static int ctrlc handler(int);

void cleanup ( void );

* .......................... _/

main(int argc, char *argv[] )

{
double incrr ;

atexit(cleanup);

if ( signal(SIGINT, ctrlc_handler) == SIG_ERR )

exit(2);

if (argc <= 2 )

{
exit(2) ;

}

incrr = atof( argv[2] ) ;

makefile(argv[l]);

makeline( incrr );

copyline();
exit(0);

int makefile(char *filename)

{
if ((fh = open( filename, O_RDWR I O_CREAT I O_EXCL I O_BINARY, \

S_IREAD I S_IWRITE ) ) == -1 )
{

printf("Error opening file %s\n ", filename);

exit(l);

)
return(0) ;

)

int makeline(double incr)

{

NASA/TM--2000-210381 12



int i ;

for(i = O; i < 512 ; i++ )

(
buff[i] = (unsigned char) (127

}

int copyline ()
(

int j ;

for(j = 0 ; j < 484 ; j++
{

write(fh,buff,512) ;

)
for(j = O; j < 512 ; j++)
{

printf("%d\n", buff[j] )
)

void cleanup (void)
{

if ( fh _= -i )
close(fh);

}

int ctrlc_handler(int sig)

{
exit(l) ;

)

* (l+sin((2*PI*i)/ incr) ) ) ) ;

guessed it) 6/53 of the sample rate. This image (fig. 7) shows the symptoms. (Look for a few extra dark vertical

bands.) Since an image is "virtual," one could assume that this image is actually a monochrome frame-grabbed

video image of a rectangular panel on a wall in a room, and the panel happens to have a sine-wave fringed pattern

like the image, but without the distortion. Once the camera taking the image is positioned correctly, the lens and

charge-coupled device (CCD) sensor in the camera can create this effect if the fringes "beat" with the 512 dot

spatial frequency of either the camera or the digital frame grabber.

4. GRAPHING THE FIELD OF POSSIBILITIES

The interesting ratios mln form a mathematical field of fractions where the numerators and denominators

are mutually prime integers or products of mutually prime integers. When graphed in Cartesian coordinates such that

n is the ordinate and m is the abscissa, and little crosses (×) or nodes mark each {re,n} coordinate, the resulting

graph resembles a minefield of nodes (fig. 8). The nodes representing the Nyquist frequency can be connected as a

line of slope equal to 2 crossing the origin at {0,0}, hereby named the Nyquist line. For clarity, figure 8 has been

drawn so that nodes on the far side of the Nyquist criterion (m > n/2) have been excluded.

In figure 8, the two regions, one on each side of the Nyquist line, are labeled as "I" and "II" for a particular

reason. Region I is the region where classic signal alias is defined. Region II defines the domain where sub-Nyquist

distortions, the subject of this paper, are defined. Most digital sampling applications occur in Region II. It is where

billions of dollars are invested in technology depending on accurate sampling. Remember that in most of these

applications, the Sampling Integral is never included as part of the waveform reproduction or display means.

The reader by now should realize that all of the above are special cases. Normally the sampled signal is not

sinusoidal, but of course the signal is assumed to be band-limited. Also, the ratio between a signal frequency and the

sampling frequency is for all practical purposes a "random" ratio somewhere in Region II, hopefully and we assume

NASA/TM--2000-210381 13
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The calculation proceeds as follows. From the graphed figures in this paper (or the wheel analogy), it is clear that

the overall period of the modulation error is m*n. It is also clear that the time m*n represents the entire cycle of the

modulation error, and therefore, is the time or horizontal distance from one peak to the next peak of the modulation

ripple. The number of samples from peak to valley of the modulation is then equal to

1/1"//

2 (8)

Starting from t0, after approximately one full cycle of the signal at rate m, exactly n samples will have been

acquired.

It is useful now to convert from time units to angular vector relationships, to radians of revolution, and treat

the next few equations in radians rather than time. A full cycle of the signal is 2_ radians, and each sample will be

spaced approximately 2rt/n radians apart. At the end of n samples, there will be a residual angle left over, plus or

minus, which must be applied as a debt or credit to the following signal cycle of 2re radians. This error slowly accu-

mulates over many periods to reach a maximum where the valley of the ripple has the greatest depth. Therefore, the

total length from peak to valley is, converted from above,

(one - half # of samples) * (distance between samples) = (mo--_-) * (-_-_ / radians. (9)

There is a temptation to simplify equation (9), but let's not do it yet. We need to find the left over phase

error at the valley, which is calculated by calculating the residual phase error modulo m:

O= I/ ---_)(-_) m°d(m ) - (-_)[(m--_) mOd(m)].1 - (10)

Now, we need to make use of the fact that m and n are mutually prime integers. Since, per equation (6), m is n less

than m, then m is the only one of the two integers which can take on the value 2. Therefore, n, being greater than two
and prime, will always be odd, and n/2 is also not a whole number. But, if n is odd, then (n - 1) is even, and
(n - 1 )/2 is a whole number. Then,

(m  )mod(m)=[(n-1+l)*n.- lmod(m)=I((n-l)*-m)+(-m)]mod(m)

l'tl

=0+-- (12)
_)

and therefore, the total phase error is

The normalized full-scale amplitude of the signal in the valley of the notch, av, is then:

a,:cos(0,:co (7)

(13)

(14)



av = 0.937...

which amounts to a 6 percent peak error!

Given that amount of error amplitude, we are curious to evaluate when the distortion error from a Region II

node is smaller than a certain percentage of full scale. More important is to determine when the error is small

enough to be inconsequential. In an n-bit sampling system, any error smaller than the smallest step sample size will

not be resolvable. Referring to figure 9, for the normalized full-scale error value e such that:

£=l-av=l-cos(x *m)
(15)

when applied to an 8 bit sampling system, gives an error e smaller than one bit which is

1 / 256 = 0.4 percent.

Solving for the ratio m/n in equation (15)

m 1
-- < -- *arccos(l - e)

n

and applying equation (16) to the above error of 0.4 percent,

m < 0.028.
n

Therefore, for a telephone line channel sampled at 8000 times/sec (a common telephone industry sample

rate for a private line) sampled with an 8-bit analog-to-digital converter, distortion is negligible below 224 Hz, a

frequency lower than the musical note middle C.

Similarly, for a 10 bit waveform recorder (1000 points across the print head) sampling at 10,000 Hz, a

manufacturer might claim that the instrument is "fiat to 5000 Hz," which is the Nyquist frequency. So to display no

Region II modulation above one dot peak error (0.1 percent) at full scale requires having no signals exceeding

142 Hz! Typically, instrument manufacturers will be reluctant to admit this constraint exists because, through no

T
Figure 9.--The maximum percentage modulation error

depends on determining the distribution of samples
near the envelope peak, as in equation 15.
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faultoftheirown,thisconstraintwouldmakethespecificationsfortheirinstrumentationequipmentappeartobe
ratherpoor.

4.2MoreAbouttheNyquistTheorem

Industryliteratureisrifewithdescriptionsofhowaliasingoccurs whenever a sampled signal exceeds the

Nyquist limit. Nothing has been found in the literature which describes significant signal peak modulation distor-

tions caused by sampling errors for signal frequencies far smaller than the Nyquist limit. This study has shown that,

in spite of assumptions based on recurrent descriptions in the literature of aliasing errors caused only by violations

of the Nyquist limit, a distortion error can occur at frequencies far below the Nyquist limit.

One might ask an almost obvious question at this point. Why not just use the formulas above and "correct"

the distortion effects by putting in a variable amplification factor to remove the dip in the waveform? The answer to

that is two-fold. First, the locations of the distortions are very much dependent upon the phase between the signal

and the sampling frequency. There is no way a priori to determine the relative phase shift. That is, on which sample

will the waveform start to dip, given that in the application we do not even know the waveform's frequency or phase

or amplitude until after the waveform distortions occur? Second, we know that a typical waveform is not a perfect
sine-wave, but is usually a composite of many waveforms, per Fourier theory, with some added system noise from

the "real world." Therefore the offending distortion, and only the offending distortion, would have to be isolated

first in order to perform the correction. It would be far easier to implement the reconstruction via the Sampling Inte-
gral and let all the corrections be done with a consistent provable algorithm.

Unfortunately, past attempts to perform waveform reconstruction on a computer, given unlimited computa-
tion time, using both FORTRAN and MATLAB TM has shown no feasible solution to the reconstruction problem.

Given a finite sequence of samples, we have been able to apparently reconstruct a sine-wave without modulation

distortion. But the very same algorithms fail miserably to reconstruct square-waves, and we can infer that other
wavetbrms such as sawtooth waveforms would also show severe reconstruction errors. These errors have been

known for years as resulting from the Gibbs phenomenon and there have been numerous studies in that area (ref. 7).

A conjecture will now be made. Aliasing errors are not just confined to Region I on figure 8. It is also pos-
sible to consider that the envelope distortions which occur in Region II are really a form of "sub-Nyquist" alias.

Therefore, in this report, Region I aliases could be named "'Type I aliases." Similarly, Region II modulations could
be named "'Type II aliases."

5. CONCLUSIONS

In waveforms, statistical data, and images, sample aliasing due to system coincidences can occur in one of

two domains as defined by the Nyquist frequency line in figure 8. The two domains have the characteristic that:

(a_ Classical aliasing in Region I occurs anytime where and are defined as in equation (4), i.e., and are
real numbers such that n > 2m.

(b) Region II distortion occurs for any positive real integers m and n where

n
l<m<_--

-)

and

n>2

and m and n are mutually prime. The integers m and n separately can be products of prime numbers

without affecting these conclusions. These mutually prime integers and products m and n form a math-

ematical field of possible trouble points, or nodes. Systems relying on sampling for gathering data obvi-

ously should avoid taking data in the condition of Region I, i.e., when the Nyquist limit is exceeded.

But system designers should also avoid Region II nodes whenever possible if they are implementing

systems which do not perform adequate waveform reconstruction before presenting plots which display
critical information.
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Thisreporthasshownthat a new domain of distortion, in Region II, has subtle implications for the fabrica-

tion of systems using digital waveform sampling. Except for television, where the effects of swimming color bands
are obvious and even obnoxious, there has not been a great deal of attention focused on this type of alias. However,

in the future, engineers and statisticians should determine what impact the Region II distortion may have their data

before drawing conclusions.
Finally, in this report, no detailed analysis has been done to see if the modulation effects around a Region II

node result in extra peaks in the power spectrum indicating signal power is aliased into undesirable frequencies. No

claim is made that the Region II distortions result in real signal power being lost from the sampled signal. However,

we are concerned that in rare cases the envelope distortions could be interpreted as modulation and cause serious

consequences in error detection systems and feedback control systems.
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